Predicting Human Mobility via Graph Convolutional Dual-attentive Networks

Weizhen Dang Tsinghua University Beijing, China dangweizhen@126.com

Pei Zhang
Beijing University of Posts and
Telecommunications
Beijing, China
zhangpei@bupt.edu.cn

Haibo Wang* Tsinghua University Beijing, China hbwang1994@gmail.com

Chuan Zhou Chinese Academy of Sciences Beijing, China zhouchuan@amss.ac.cn

> Jilong Wang Tsinghua University Beijing, China wjl@cernet.edu.cn

Shirui Pan Monash University Australia shirui.pan@monash.edu

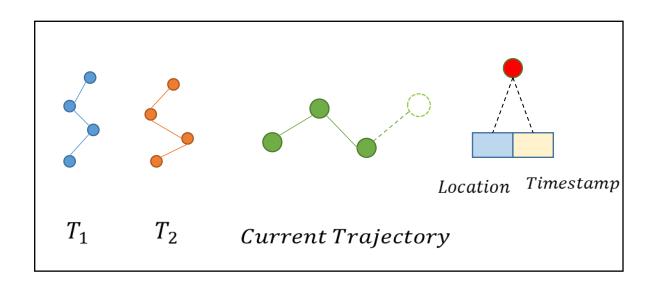
Xin Chen Tsinghua University Beijing, China chenxinsteven@outlook.com

WSDM 2022 Code: https://github.com/GCDAN/GCDAN

Introduction

Methods that already exist do not well cope with the sparsity and inaccuracy of trajectory data and the complicated high-order nature of the sequential dependency.

To solve the problems, this paper proposes a novel framework named Graph Convolutional Dual-attentive Networks (GCDAN).



An example for Human Mobility Predicting

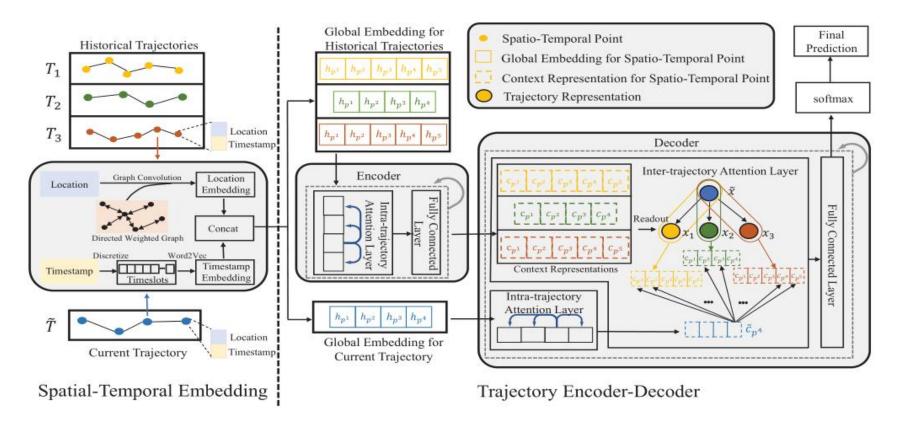


Figure 1: The overview of GCDAN. The spatial-temporal embedding module introduces the graph convolution and sparse embedding to learn representations of spatial-temporal points. The trajectory encoder-decoder module employs a dual-attentive mechanism. The intra-trajectory attention layer models the sequential dependence within a trajectory and generates the context representation for each spatial-temporal point. The inter-trajectory attention layer models the correlation between the historical trajectories and current trajectory and generates the final prediction.

Problem Formulation

location identifiers: L= $\{l_1, l_2, ..., l_{|L|}\}$

spatio-temporal point: p=(l, t)

user: U= $\{u_1, u_2, ..., u_{|U|}\}$

trajectory: $T_u = p_u^1 p_u^2 \dots p_u^m$

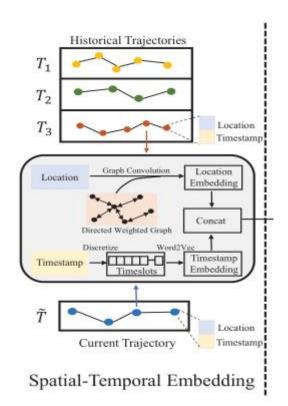
historical trajectories: $S_u = \{T_u^1, T_u^2, \dots, T_u^{|S_u|}\}$

current trajectory: $\tilde{T}_u = p_u^1 p_u^2 \dots p_u^n$

Spatio-temporal Embedding Module

Timestamp Embedding:

$$h_t = \Theta_T \mathbf{v}_t$$

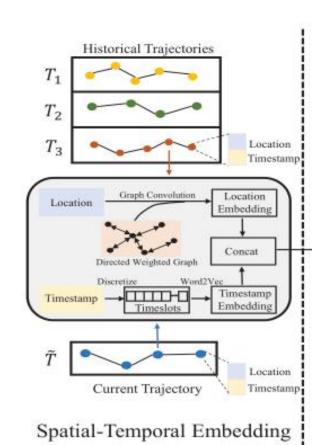


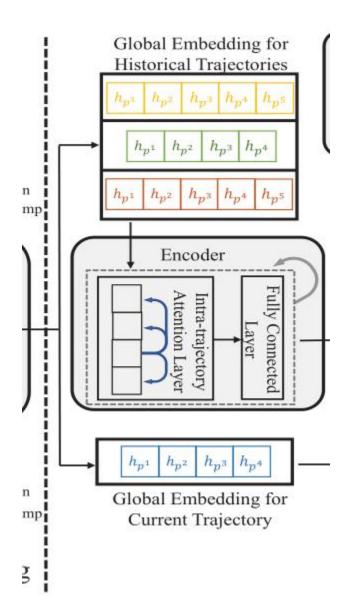
Location Embedding:

$$\begin{cases} w_{ij} = \frac{c_{ij}}{\sum\limits_{l_r \in L} c_{ir}} & \frac{c_{ij}}{\sum\limits_{l_r \in L} c_{ir}} > \frac{1}{|L|}, \\ w_{ij} = 0 & otherwise, \end{cases} c_{ij} = (l_i, l_j) \quad (1)$$

$$H_{L} = \sum_{k=0}^{K-1} \sigma \Big((D_{O}^{-1} W)^{k} V_{L} \Theta_{k}^{0} + (D_{I}^{-1} W^{T})^{k} V_{L} \Theta_{k}^{1} \Big),$$
 (2)

$$D_O = diag(\mathbf{W}\mathbf{1}) \text{ and } D_I = diag(\mathbf{W}^T\mathbf{1})$$
 $H_L = (\mathbf{h}_{l_1}, ..., \mathbf{h}_{l_{|L|}})^T \qquad H_L \in \mathbb{R}^{|L| \times d2}$
 $\mathbf{\Theta}_k^0 \in \mathbb{R}^{|L| \times d2} \text{ and } \mathbf{\Theta}_k^1 \in \mathbb{R}^{|\bar{L}| \times d2}$





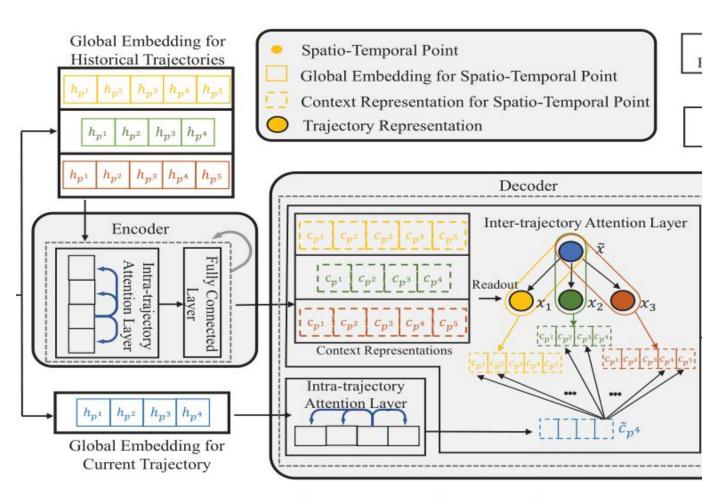
Global Embedding:

$$\boldsymbol{h}_p = \boldsymbol{h}_t \mid\mid \boldsymbol{h}_l \quad \boldsymbol{h}_p \in \mathbb{R}^{d1+d2}$$

Trajectory Position Coding:

$$pos_i(j) = cos\left(\frac{i}{C^{\frac{j-(j\%2)}{d_1+d_2}}} - \frac{(j\%2)\pi}{2}\right);$$
 (3)

$$h_{p^i} = h_{p^i} + pos_i$$



Trajectory Encoder-Decoder

Trajectory Encoder-decoder Module

Encoder:

$$sim_{p}(\boldsymbol{h}_{p^{i}}, \boldsymbol{h}_{p^{j}}) = \frac{\exp\left(f(\boldsymbol{h}_{p^{i}}, \boldsymbol{h}_{p^{j}})\right)}{\sum\limits_{r=1}^{m} \exp\left(f(\boldsymbol{h}_{p^{i}}, \boldsymbol{h}_{p^{r}})\right)},$$

$$\boldsymbol{c}_{p^{i}} = \sum\limits_{j=1}^{m} sim_{p}(\boldsymbol{h}_{p^{i}}, \boldsymbol{h}_{p^{j}}) \boldsymbol{h}_{p^{j}},$$
(5)

$$\boldsymbol{c}_{p^i} = \sum_{j=1}^{m} sim_p(\boldsymbol{h}_{p^i}, \boldsymbol{h}_{p^j}) \boldsymbol{h}_{p^j}, \tag{5}$$

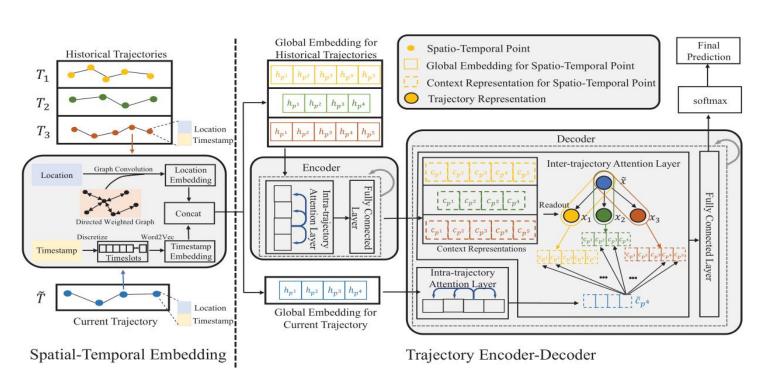
Decoder:

$$x = \frac{1}{m} \sum_{j=1}^{m} c_{p^{j}}, \tag{6}$$

$$sim_{t}(\widetilde{x}, x_{i}) = \frac{\exp\left(f(\widetilde{x}, x_{i})\right)}{\sum_{r=1}^{|S|} \exp\left(f(\widetilde{x}, x_{r})\right)},$$
(7)

$$v_{p^n} = \sum_{i=1}^{|S|} sim_t(\widetilde{x}, x_i) \sum_{j=1}^m sim_p(\widetilde{c}_{p^n}, c_{p^j}) c_{p^j}, \tag{8}$$

Objective Function



$$\hat{\mathbf{y}} = softmax(\hat{\Theta}\mathbf{v}_{p^n}), \tag{9}$$

$$\mathcal{L}_c = -\sum_{u \in U} \sum_{i=1}^{|L|} \boldsymbol{y}_u^i \log \hat{\boldsymbol{y}}_u^i, \qquad (10)$$

$$\mathcal{L} = \mathcal{L}_c + \alpha \mathcal{L}_{reg}, \tag{11}$$

Figure 1: The overview of GCDAN. The spatial-temporal embedding module introduces the graph convolution and sparse embedding to learn representations of spatial-temporal points. The trajectory encoder-decoder module employs a dual-attentive mechanism. The intra-trajectory attention layer models the sequential dependence within a trajectory and generates the context representation for each spatial-temporal point. The inter-trajectory attention layer models the correlation between the historical trajectories and current trajectory and generates the final prediction.

Table 1: Dataset statistics.

Dataset	Gowalla	Foursquare	WiFi-Trace	
Time duration	1 year	1 year	2 week	
Users	857	886	3642	
#(Record)	129679	82575	1011049	
#(Trajectory)	8568	7974	41937	
#(Location)	20006	10497	251	

for each dataset. In our experiments, we select the first 75% of trajectories for each user as the training data and the rest 25% as the testing data. In addition, 10% of the training data is used as the validation data.

Table 2: Gowalla

Table 3: Foursquare

Table 4: WiFi-Trace

Metrics	MC	FPMC	LSTM	ST-RNN	DeepMove	GCDAN
Acc@1	0.1188	0.1204	0.1252	0.1279	0.1338	0.1377
Acc@5	0.2056	0.2066	0.2453	0.2568	0.2731	0.3086
Acc@10	0.2306	0.2307	0.2907	0.3112	0.3299	0.3780

Metrics	MC	FPMC	LSTM	ST-RNN	DeepMove	GCDAN
Acc@1	0.0818	0.0835	0.0912	0.1057	0.1245	0.1613
Acc@5	0.1753	0.1762	0.1824	0.2368	0.2790	0.3417
Acc@10	0.2252	0.2257	0.2120	0.2787	0.3360	0.4093

Metrics	MC	FPMC	LSTM	ST-RNN	DeepMove	GCDAN
Acc@1	0.1612	0.3231	0.5685	0.5702	0.5729	0.5912
Acc@5	0.3173	0.5169	0.7821	0.7918	0.8030	0.8064
Acc@10	0.3882	0.6843	0.8473	0.8523	0.8707	0.8726

Table 5: Ablation Study.

	Gowalla	Foursquare	WiFi-Trace
GCDAN-base	0.1311	0.1580	0.5768
GCDAN-tc	0.1340	0.1607	0.5815
GCDAN-gc	0.1336	0.1597	0.5895
GCDAN-full	0.1377	0.1613	0.5912

The above experimental results demonstrate the effectiveness and superiority of GCDAN.

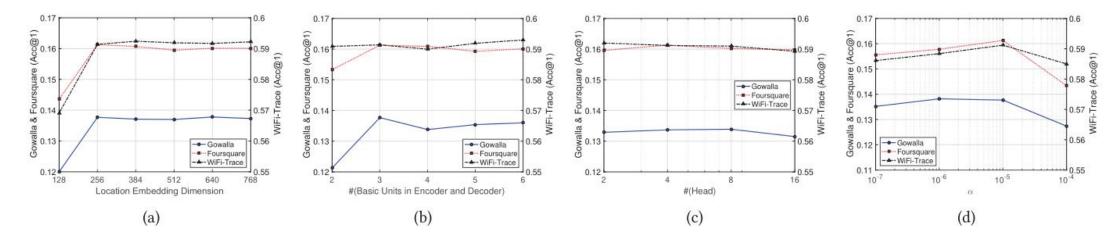


Figure 2: Results of parameter sensitivity w.r.t. (a) the location embedding dimension, (b) the number of basic units in encoder and decoder, (c) the number of heads of the multi-head attention mechanism and (d) the balance hyper-parameter α in Eq. (11)

Thanks